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Abstract 
 
This study applies DE (discrete element) computational method to the dynamic problems of a vibrating string. The 

DE method was originally initiated to analyze granular materials and now it has expanded to model fabric dynamics 
which is of interest in a number of applications including those that manufacture or handle textiles, garments, and 
composite materials. Owing to the complex interactions between each discrete element, simple circular geometric rigid 
model has been used in the conventional DE method. However, in order to analyze the slender shape and flexibility of 
materials such as fabrics or strings, longer and flexible geometric models, named as fiber models, was developed. The 
fiber model treats a series of connected circular particles, and further can be classified as being either a RF (rigid fiber) 
or a CFF (completely flexible fiber) model. To check the feasibility of those models, dynamic problems were solved 
and it is found that the fiber models accurately simulate the dynamic and vibration behaviors of horizontally or 
vertically placed strings. 
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1. Introduction 

The dynamics of fabrics, for example in a washing 
machine, is very complex not only because of 
geometric complexity but also because of compo-
sition of dissimilar materials. In addition, since fabrics 
can have different thicknesses and can be subjected to 
large bending deformations, models including such 
details are too complex to represent the dynamic 
behaviors in practical applications. Furthermore, al-
though such fabric elements are successfully modeled, 
the computations would be essentially impractical due 
to a large number of interactions between each 
element in a system.  

Despite appearing seemingly unrelated, the dyna-

mics of a fabric in a rotating drum for example, have 
many similarities with that of discrete element in ball 
mills. The particle dynamics occurring within a ball 
mill have been widely studied by the DE (discrete 
element) method [1-4]. A ball mill is a device used to 
grind or crush particulates and commonly consists of 
a rotating drum partially filled with grinding media, 
typically steel balls, and the material to be 
comminuted. 

The DE method is similar in many respects to 
physical force-based models but it includes more 
detailed contact force models and is typically used to 
investigate the dynamics of discrete particle systems. 
There are several types of DE model including the 
soft-particle and hard-particle approaches. In general, 
the majority of DE simulations rely upon the soft-
particle method because it provides the gradual 
contact when the elements interact each other.  

Although the conventional DE model predicts 
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accurately the dynamics of particles, however, 
essentially it is not appropriate to simulate the slender 
shape or the flexibility of materials due to its simple 
shape. For this reason, two fiber models were 
developed in this study to simulate long-shaped 
flexible elements such as a vibrating string. These 
include modeling fabric elements as rigid fibers (RF) 
and completely flexible fibers (CFF); where the 
bending stiffness of the first is infinite whereas that of 
the second vanishes. 

Furthermore, the rigid fiber and completely flexible 
fiber models were applied to the dynamics problems 
of a vibrating string. Three well known vibration 
problems were solved by the fiber models in the DE 
simulation. According to the good agreement with 
analytic solutions of the those three case studies, it is 
found that the developed RF and CFF models in DE 
simulation accurately predicts the dynamic and 
vibration characteristics and can be expanded to the 
study of complex and nonlinear vibrating systems. 
 

2. Discrete element method 

2.1 Discrete element approach 

The DE method has been used extensively for 
investigating the dynamics of granular materials for 
the last twenty years. In DE modeling, the material 
under investigation is treated as a collection of 
discrete objects or elements. Several types of DE 
algorithms exist including the soft-particle and hard-
particle approaches, Monte Carlo models, and cellular 
automata. The majority of DE simulations, however, 
rely upon the soft-particle method since it offers 
flexibility when including element interactions, can 
model long-lasting and multiple-particle contacts, and 
is based on deterministic physics rather than pro-
bability. 

In the soft-particle approach method, forces acting 
on each element are governed by appropriate force 
laws at each instant. The accelerations of the elements 
are determined by Newton’s second law and new 
particle states are then found by integrating the 
resulting equations of motion in time. This process is 
repeated until the final state, for example a maximum 
time limit, is reached. A flowchart of the DE 
algorithm is illustrated in Fig. 1. Although the algo-
rithm is straightforward, the DE approach can be 
computationally intensive because a large number of 
particles are often used in the simulations. In a ball 
mill study which is one of the typical applications of 

DE method, it has been shown that two-dimensional 
DE simulations predict three-dimensional dynamics 
well [4]. Hence, the present study considers only two-
dimensional systems.  

 
2.2 Contact forces and parameters 

Typically, the forces acting on elements include 
both body and surface forces. The body force acting 
on element i is the gravitational force, or weight, FG,i, 
given by 

 
,G i im= gF  (1)  

where mi is the mass of i-th element and g is the 
gravity which acts at the center of mass of the 
element. The surface forces used in the present DE 
simulations include only contact forces between 
elements.  
Quantifying the contact force between elements can 
be one of the most complex parts of DE modeling. In 
the soft-particle approach, the contact force is deter-
mined by the amount of overlap during contact. This 
overlap represents the surface deformation occurring 
when real materials come into contact. The amount of 
the overlap and the relative speed of the impact are 
often used to determine the resulting contact force. 

 
 

 
 
Fig. 1. Flowchart of the discrete element simulation algori-
thm. 
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Further, the contact force is subdivided into normal 
and tangential components. The normal component 
acts in the direction that is perpendicular to the plane 
defined by the intersection of the two elements, i and j. 
This direction is signified by the unit vector, nji. On 
the contrary, the tangential force component acts in 
the direction perpendicular to the normal direction 
defined by the unit vector as shown in Fig. 2. 

Three different normal contact force models can be 
utilized in the DE method such as the damped linear 
spring model [1], a non-linear hysteretic spring model 
[5], and the hysteretic (or latched) linear spring model 
[6]. In these models damped linear spring, which is 
composed of an elastic spring and a dashpot, is 
commonly used to calculate the normal and tangential 
contact forces as the schematic diagrams shown in 
Fig. 3. In this model, the normal spring force is 
generated by the repulsive elastic spring and damping 
force is by the dashpot which dissipates energy during 
the contact. Therefore, the normal contact force that j-
th particle exerts on i-th particle, Fn,ji is written as 

 
, ,[ ( )]n ji n ji n c ji ji jik α ν= − + ∆ ⋅ n n&F x  (2) 

 
where kn and νn are the spring constant and damping 
coefficient between particles, respectively. In addition, 
αji is the amount of overlap between the two particles, 
and ,c ji∆ &x  is the velocity of a particle relative to the 
other particle at the contact point. Finally, nji is the 
unit vector pointing from the center of i-th particle to 
the center of j-th particle.  
 
 

 
 
Fig. 2. The normal and tangential directions of the contact 
force. 

Parameters used in normal contact force of Eq. (2) 
can be calculated as following. The overlap, αji, 
between two circular particles is  

 
( )ji j i j ir rα = + − −x x

 
(3)

 
 

where xi is the position vector indicating the center of 
mass of i-th particle and ri is the radius of the i-th 
particle (see Fig. 4). No contact occurs if αji < 0 in the 
conventional DE model. The unit normal vector 
pointing from the center of i-th particle to the center 
of j-th particle, nji, can be written as 
 

| |
j i

ji
j i

−
=

−
n

x x
x x  (4) 

 
Also, the unit tangential vector, sji, is normal to nji and 
points in the direction of the relative tangential 
velocity. Finally, the velocity of j-th particle relative 
to i-th particle at the contact point, ,c ji∆ &x , is 
 

, ( ) ( )c ji j j j ji i i i jir r∆ = − × − − ×θ n θ n& && & &x x x  (5) 
 
where iθ& and ri are the angular velocity and the 
radius of i-th particle, respectively.  

 

 
 
Fig. 3. Schematic diagrams of the normal and tangential 
contact forces in damped linear spring model. 
 

 
 
Fig. 4. Geometric configuration of two particles when 
overlapped. 
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The normal spring stiffness and damping coeffi-
cient are determined by the coefficient of restitution 
for the impact between two particles and by the 
allowed amount of overlap during the collision. For 
the damped linear spring model, the normal damping 
coefficient has relation to the spring stiffness and 
coefficient of restitution such as 

 

2

4
1

n
n

m kν
β
′

=
+

 (6) 

 
where 1 1 1( )i jm m m− − −′ = +  is the equivalent mass of 
the colliding particles, β = π/lnε where ε is the 
coefficient of restitution during the collision [7]. Also, 
the linear spring stiffness is found by limiting the 
maximum overlap during the collision to 1% of the 
minimum particle radius, rmin, and written as for a 
typical impact velocity, V 
 

21

min

tanexp
0.01n

Vk m
r

β
β

−⎡ ⎤⎛ ⎞′= −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (7) 

 
Campbell observed that a maximum overlap of 1% of 
the particle radius is sufficient to avoid measurement 
errors resulting from excluded area effects [8]. In this 
study, because the deformation and collisions of 
fabrics are very dissipative, the baseline coefficient of 
restitution is set to 0.1. 

Tangential force is also generated during contact 
and it is modeled as a linear spring in series with a 
sliding friction element in linear spring model (refer 
to Fig. 3). The spring force provides elastic tangential 
response while the sliding friction element provides 
dissipation. The tangential force exerted on i-th 
particle due to contact with j-th particle acting in the 
tangential direction, FS,ji, is given by 

 

0

0

0

,

,

,

,

s c ji ji jit

s n s c ji jit

s ji

S n ji

s n s c ji jit

k dt

if k dt

if k dt

µ

µ

µ

⎧− ∆ ⋅
⎪
⎪

> ∆ ⋅⎪
⎪= ⎨
⎪

−⎪
⎪

≤ ∆ ⋅⎪
⎩

∫

∫

∫

s s

s

s

s

&

&

&

x

F x
F

F

F x

 (8) 

 
where ks and µs are the tangential spring stiffness and 
friction coefficient, respectively, t0 is the time at 

which the contact was initiated, and Fn is the normal 
force for the contact. The tangential spring is active 
when the spring force is smaller than the frictional 
tangential force. However, when the friction force is 
smaller than the spring force, extension is adjusted so 
that it provides a force equivalent to the sliding 
friction force. For large tangential spring stiffnesses 
and small friction coefficients, the sliding friction 
element engages early in the contact and the 
tangential spring stiffness has little effect on the 
contact dynamics. Previous analytical and experi-
mental studies have found that the ratio of the 
tangential spring stiffness to the effective normal 
spring stiffness should be 1 ≤ ks/kn ≤ 1.5 [1, 9-10]. For 
the current simulations the baseline tangential-to-
normal spring stiffness ratio is assumed to be unity. It 
is also reported that the friction coefficients of dry 
textiles are between 0.3 and 1.5, according to the 
experimental results performed by Carr et al. [11].  
 
2.3 Geometric models 

Conventional DE method employs circular parti-
cles or spherical ones as geometric models. However, 
because the conventional model is not capable of 
simulating the slender shape or the flexibility of 
materials due to its simple shape, fiber models were 
developed.  

 
2.3.1 Rigid fiber model 
The rigid fiber (RF) model is composed of a rigid 

array with inter-connected circular particles (see Fig. 
5). Forces and moments acting on the fiber are due to 
the forces acting on the intra-fiber particles. Although 
this model allows for the slender shape of materials, it  

 

 
 
 
Fig. 5. Illustration of the rigid fiber model with geometric 
configuration. 
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does not include the effects of fabric flexibility. 
Therefore, this model is not investigated in detail in 
this study, but it is instructive in the sense of 
understanding the evolution of the DE models. 

The intra-fiber particles are maintained at fixed 
positions aligned along a straight line relative to one 
another, and the absolute position of n-th particle in 
an intra-fiber xn is given by  

 
[ ]1

2 ˆ( 1) ( 1)n i fp id n N= + − − − ex x  (9) 
 
where, xi is the location of the center at i-th intra-fiber, 
dfp is the diameter of intra-fiber particles, N is the total 
number of elements in the intra-fiber structure, and 
ˆ ie  is a unit vector pointing the axis of the fiber. In 
addition, the total mass of the fiber is 
 

1

n N

fiber n
n

m m
=

=

=∑  (10) 

 
By the application of parallel axis theorem, the 
moment of inertia of the fiber is written as  
 

[ ]{ }2 21 1
10 2

1

( 1) ( 1)
n N

fiber fiber fp
n

I n N m d
=

=

= + − − −∑  (11) 

 
The baseline diameter of an intra-fiber particle is 
chosen such that the total area of the fiber (= N π 
dfp

2/4) is equal to that of the area of a conventional 
circular particle.  
 

2.3.2 Completely flexible fiber model  
The completely flexible fiber (CFF) model incor-

porates both high aspect ratio and flexibility effects. 
Like the RF model, the CFF model consists of a 
series of circular particles linked together to form a 
fiber; however, unlike the RF model the centers of an 
intra-fiber particle are connected by springs so that 
they can have a relative motion in the intra-fiber. 
While in the RF model the forces and moments acting 
on the center of mass of the intra-fiber are calculated, 
the CFF model instead tracks the forces acting on 
each individual intra-fiber particle and does not apply 
these forces to the center of mass of the intra-fiber.  

A linear damped spring is used to model the force 
between intra-fiber particle centers. Breen observed 
that a linear relationship for intra-fiber particle contact 
is valid for small deformations [12]. The spring 
constant and damping coefficient are chosen using the 
same analysis described in the previous section. No 

tangential springs are included between intra-fiber 
particles.  

 
2.4 Integration of the governing equations 

The forces acting on particles in the system were 
described in Section 2.2. Applying Newton’s 2nd law, 
the accelerations of a particle (or rigid fiber) are 
calculated by 

 

i i i
m =∑&&x F  (12) 

i i iI =∑&& Mθ  (13) 

 
where mi and Ii are the mass and moment of inertia of 
i-th particle (or rigid fiber), respectively. The 
accelerations are integrated in time using Euler’s 
method with a fixed time step, ∆t, to determine new 
states of the particle. In order to accurately integrate 
the resulting equations of motion, the time step is set 
to one-tenth the smallest period of motion which 
corresponds to the rotational motion of a particle in 
contact with the maximum number of particles that 
can surround the particle [13].  
 
3. Application of Fiber Models 

3.1 Rigid Fiber Model  

The RF model simulation results are compared 
against the analytical solution for a rigid bar colliding 
with a fixed plate (see Fig. 6). The dynamics of a 
rigid bar impacting a surface can be found in a 
number of dynamics textbooks [14]. Assuming that 
the contact is frictionless, gravity can be neglected, 
and zero initial angular velocity, the angular velocity 
of the bar after the collision will be 
 

 
 
Fig. 6. Schematic of a rigid fiber colliding with a fixed plate. 
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where ,y CMV −  is the center of mass y-velocity before 
the collision, M is the bar mass, ε is the coefficient of 
restitution for the collision, L is the bar’s length, β is 
the angle between the y-axis and the bar prior to 
impact, and I is the bar’s moment of inertia. The bar’s 
center of mass y-velocity after the collision is: 
 

( )2, , sinL
y CM y CM zV Vε β θ+ − += − + &  (15) 

 
Table 1. Properties of the rigid fiber. 
 

Parameter Value 

Mass of fiber, mf [kg] 0.443 

Number of particles, N 5 

Mass of a particle, mp [kg] 0.0886 

Length of fiber, L [m] 0.0425 

Restitution coefficient, e 0.9 

Diameter of particle, d [m] 0.0106 

Velocity before collision, V0 [m/s] -2.0 
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Fig. 7. Velocity and error of the rigid fiber after collision.  
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Fig. 8. Angular velocity and error of the rigid fiber after 
collision. 

The RF simulation results for ,y CMV +  and zθ +&  are 
plotted in Fig. 7 and Fig. 8 respectively, along with 
the analytical predictions as a function of the initial 
bar angle. The parameters used here are listed at 
Table 1. The error generally increases with increasing 
bar angle and reaches a maximum of approximately 
2%. The agreement between the two results indicates 
that the DE method correctly simulates the motion of 
a rigid, large aspect ratio object. 
 
3.2 Completely flexible fiber model  

Dynamic characteristics of a vibration string were 
analyzed by the CFF model of the DE method. First, 
the response of a flexible fiber fixed at both ends was 
compared to that of a string model. The classic linear 
string analytical model assumes that only small 
transverse motions (A << L where A is the maximum 
displacement of the string and L is the string length, 
refer to Fig. 9) occur and that the change in tension 
with deflection can be ignored. The governing 
equation for the linear plucked string problem, so-
called wave equation, is written in dimensionless 
variables 

 
2 2

2 2

z z
t x

′ ′∂ ∂=
′∂ ∂

 (16) 

 
where z′ (= z/L) is the dimensionless transverse 
displacement, t′ ( = 2 /L T tρ ⋅  where ρ is the string 
mass per unit length and T is the string tension) is 
time, and x′ is the longitudinal direction (along the 
axis of the undeformed string, x′ = x/L).  

A very restrictive assumption to the linear wave 
equation is that the displacements must be very small 
compared to the length of the string. However, since 
the CFFs model used in the simulation can behave 
with very large deflections, it is directly applicable to 
a non-linear string problem. Assuming that the string  

 

 
 
Fig. 9. Schematic of the vibrating string by CFF model. 



378  J. Park and N. Kang / Journal of Mechanical Science and Technology 23 (2009) 372~380 
 

mode shapes are sinusoidal, the dimensionless non-
linear string equation, so-called Kirchhoff equation, 
becomes Duffing equation such as 

 
2 4 3

0

( ) ( ) 0
4
EAz m z m z
T

π π′ ′ ′+ + =&&

 
(17)

  
where z′ is the dimensionless deflection along the 
transverse direction of the string (= z/L), m is an 
integer, E is the Young’s modulus of the string, A is 
the cross-sectional area of the string, and T0 is the 
initial tension acting on string. Although the solution 
to this nonlinear ordinary differential equation can be 
written in terms of a series solution, in this study, 
MATLAB was used to get a numerical solution. 

The simulations are performed for a fixed fiber 
length with different number of particles in the range 
between 13 and 49. Also, to compare the effect of 
large deflections, maximum displacement of the 
vibrating string is increased up to 10% of the string 
length. In the computation, the spring constant 
between intra-fiber particles is not equal to that of the 
overall fiber Young’s modulus. Instead, they are 
related by 

 
( 1) /fiber particlek L k N L= −  (18)  

 
where kfiber is the spring constant for the overall fiber, 
kparicle is the spring constant between intra-fiber 
particles, and N is the total number of particles in the 
fiber. Figure 10 shows the error of vibrating 
frequency calculated by CFF model and non-linear 
string one. As the number of particles is increased, the 
errors are monotonically decreased and remain less 
than 2% over two orders of magnitude difference in 
initial amplitude.  
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Fig. 10. The errors of a vibrating string in frequency with 
respect to the number of particles when computed by the CFF 
model. 

The vibration of a vertically hanging string was 
also studied by the CFF model to check the feasibility 
of DE method. Considering the mass of a hanging 
string fixed at top, the general form of boundary value 
problem is written as [15] 

 

2( ) ( ) 0d dU xgx U x
dx dx

ρ ρω⎡ ⎤ + =⎢ ⎥⎣ ⎦
 (19) 

 
where, ρ is the mass per length of the string, g is 
gravity, ω is the eigenvalue, and U (x) is the 
transverse displacement of the string. It is well known 
that the eigenfunctions of Eq. (19) are the Bessel 
function of zeroth order, i.e.,  
 

0( )n n

xU x J k
L

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (20) 

 
and the corresponding period of n-th mode is 
 

4
n

n

LT
k g
π=  (21) 

 
where, L is the length of the string and kn is the n-th 
positive root of J0(x).  

The period of first four modes shown in Fig. 11 are 
simulated by DE method, and the errors of each mode 
are plotted in Fig. 12. All errors are monotonically 
decreased and further are converged certain values, as 
the number of particles is increased. It is interesting 
that the error of the 2nd mode is smaller than that of 
the 1st mode, however, the errors are all within 5% 
for a sufficient number of particles in the CFF model.  

DE simulation results of vibrating strings ensure 
that the CFF model can be applicable to vibration 
problems as well as dynamic ones. Further, it is  

 

 
 
Fig. 11. First four modes of a vertically hanging string. 
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Fig. 12. The errors of a hanging string in period with respect 
to the number of particles when computed by the CFF model. 

 
expected that the structure having bending rigidity 
such as a beam also can be analyzed by introducing 
PFF (partially flexible fiber) model, although it has 
not been developed yet. 
 

4. Conclusions 

The discrete element computational method was 
introduced and applied to dynamic problems. For the 
simulation of long shaped structure, two fiber models, 
rigid fibers (RF) and completely flexible fibers (CFF), 
were developed and applied to the analysis of 
dynamic problems such as a string vibration. Through 
the in-depth studies of three different cases, it is found 
that the fiber models of the DE method accurately 
predict the dynamic and vibration characteristics of 
horizontally or vertically placed strings. 
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